文章插图
钢琴调律【钢琴调律】钢琴调律俗称(调音)简单地说,就是将琴弦拧紧或者放鬆,使其达到一定的音高(国际标準音) 。即以小字一组a音,振动频率以440Hz为标準,按十二平均律的生律方法来调试钢琴的每一个音 。钢琴调律是一个较複杂的工作,调律师不仅要将音调準,而且要将钢琴各机械部分调试正常,使各个系统恢复正常 。让钢琴的良好演奏性能及音乐效果得到充分发挥 。
基本介绍中文名:钢琴调律
外文名:无
行为:将琴弦拧紧或者放鬆
振动频率:以440Hz为标準
钢琴维护首先钢琴主要发声是张满近230根琴弦的木质音板与它连张一起的铸铁框架 。220多根琴弦被分成几组,构成弦列系统:每根琴弦的平均张力约90公斤,整台钢琴的总张力达20吨左右 。由于琴弦和铁架及音板都有弹性,它们在琴弦绷紧后,就成为一个有着很大内应力的综合弹性体,在音槌的敲击下,琴弦和弹性体作用规律的振动,发出悦耳的音乐,由于这个综合弹性体本身内应力很大,而且会受到温度、湿度、气压等影响,同时又在不断地振动发声,所以钢琴的音律还是处于不断的变化之中 。这种变化如果不进行规範和校正,任期变化,将会使整台钢琴的音高处于混乱状态 。钢琴在使用时处于敲击运动状态,甚至一天到晚都不休息,琴弦所受的外力越大,其变化就越明显 。因而他和许多乐器(如提琴、二胡、吉它)一样,需要不断地调音(定弦) 。但值得庆幸的是,在这一类形的乐器中,钢琴的稳定性是最强的 。(一般能维持4--6个月),而且每次调音之后都能得到美好的音色 。因此,钢琴调音是维持钢琴準确音调和优美音色的必要手段 。
文章插图
钢琴是用平均律定音的 。钢琴上的每个音都能听辨出律制之间的细微差异 。随着时间的延长和弹奏次数的增加而扩大,音程的性质就会改变,有时可能会变得“面目全非、五音不全”,这对学习音乐危害太大,在这种情况下,习琴者怎幺会进入到一种真正的音乐状态呢?因为琴童的声音概念并不明确,当他们在音準差的钢琴上学习音乐时,会严重损害了听觉 。所以,要通过钢琴来学习音乐,就必须不断地为其“正音” 。被称为乐器之王的钢琴,是一种很娇贵、敏感的乐器,对湿度、温度和摆放环境都要求严格,在长期使用过程中,任何钢琴都会出现机械故障 。定期的调律维护就能把这些故障排除,使之不带病工作,延长乐器寿命,让您的钢琴永葆青春 。必要性1.首先是钢琴本身的内在质量 。说到钢琴的质量,就不能不说到钢琴的品牌问题,一般说来如果品牌好一些的钢琴,由于其工艺先进,技术高超,特别是材质选择严格符合国际标準,它所生产钢琴的稳定性也就会相对好一些,如果是杂牌琴其稳定性肯定会差一些,稳定性不好就要经常调整.钢琴的稳定性,钢琴的音準变化是由其构造和材料的固有属性决定的,是不可避免的,钢琴共有200多根弦,靠弦轴、弦轴板和铁骨张紧,弦的总拉力近20吨 。弦列通过琴码压在穹形的音板上,10余吨的张力作用在琴上必然引起相应的变形,其中音板的变形对音高影响最大,钢琴出厂以前,一般经过4—8次的拨音和调音以抵消这种变形 。2.新生产的钢琴其所使用的各种材料内应力相对会大一些,(这里主要是指琴体、琴弦、钢板,这些主要部件在生产的过程中已经进行了人工时效与自然时效处理),随着时间的持久,钢琴各零部件的内应力会慢慢的释放出来从而使钢琴的稳定性愈来愈趋于稳定,这就是为什幺年代久一些的琴总比新琴要稳定的原因 。3.钢琴在演奏的过程中,击弦机要反覆敲击琴弦,琴弦受到了外力的冲击再加上材料本身的内应力,自然就会加大了音準发生变化的趋势,钢琴在使用一段时间后,钢琴的击弦机构经过成千上万次的动作,部分易磨损的部件都不同程度磨损,导致击弦机构的行程比例、配合失调,引起触感不良,温湿度的变化也会导致钢琴的一些部件运行不良,所以钢琴在定期调律的同时也要进行调整 。4.钢琴如果经过了长途运输或者经常移动,也会引起音準的变化 。5.由于木材本身的粘弹性(象和好的麵团一样,既有弹性,又有随时间延续发生变形的性质),音板的变形是随时间延续而缓慢发生的 。儘管木材粘弹性造成的这种变形极其缓慢,它对音高的影响还是明显的,所以钢琴从製成到报废都得为抵消这种变形而调律,另外钢琴的琴弦具有金属的延展性,在长期持续的巨大张力下会发生延长和变形导致音高降低,这也是钢琴音準变化的一个原因 。调律方法1. 四五度调律法 此方法採用上四下五在基準音组的闭环循环,得出12平均律,然后利用8度扩展 。2. 三六度调律法 此方法採用三六度音拍频数相对较多,不容易分辨出个数,然后利用8度扩展,是目前国内手法调律师常见的使用方式 。3. 电子仪器调律法 此方法採用电子波形採样原理,其软体有YAMAHA、Tunelab等 。在使用了高质量拾音器的情况下,软体能够很好地辅助校準,同时获得更高的精度,但国内一些古板的调音师们通常对此嗤之以鼻 。调律工具1、止音工具 。钢琴调律是逐个音、逐根弦调试的过程,而钢琴的音多数为同音弦组构成,即一个音由两根或三根弦组成,调律时,这就需要将暂时不调试的弦止住防止它发出不必要的声音,以免干扰被调试弦的音响,而影响到调律听觉 。这也是止音工具的作用 。止音工具包括止音呢契、止音皮契、止音呢带、高音止音夹、高音止音棒、金属柄高音止音皮契和链条式止音皮契等器具 。2、校音工具 。校音工具是一种能产生或发出纯音的具有固定频率可作为调律标準音或校对、测试音高的音响工具 。校音工具主要包括音叉、电子音叉和音準仪等器材 。3、调音工具 。调音工具只有调音扳手 。调音扳手是一种转动钢琴弦轴销,以调整弦张力的大小,使音升高或降低的专用工具 。4、辅助工具 。调律工具中的辅助工具有三件:一件名叫“套筒装卸扳”;另一件是螺丝刀:再一件是“倒退制止器调整扳” 。音準仪的作用音準仪套用于钢琴调律中,所有的调音处的音高状态都能够被清楚地看到,进而使扳子的扳动量你也能轻鬆自如的确定出,可把音调準确地到所需要的高度 。音準仪实际套用上是听觉与视觉并用到一起有种互补的作用,把调律误差能够降低到最低限度 。具有省时省力、把握性大等优点,而且不但听音方面乃至经验方面的一些不足都能弥补了 。用于钢琴调律,还可以起到统一标準的作用 。周期性钢琴调音周期是指在钢琴製造生产过程中,调音的时间间隔 。本文的目的是通过实践使较长调音周期加以改革 。我国钢琴生产已三十余年,但在生产过程中对调音周期这个题目尚缺乏深入系统的研究,一般是以经验来确定调音周期,当音準受到各种因素影响而出现问题时,往往不知从何着手解决,有时甚至过分地强调了调音周期的重要性,而对真正影响音準的因素注意不够,致使音準水平不能提高 。调音周期的经济意义目前钢琴生产已成为大工业生产方式,虽然由于钢琴本身的特殊性存在很多必不可少的手工操作,但其生产组织形式已向工业化生产发展,在较已开发国家已形成流水线,年产达数十万台 。我国几家钢琴厂近年也都有较大发展,:各厂产量也已达5000台,原来的生产方式现在已感到束缚生产发展而必须加以改革,其中改革调音周期就是非常重要的一环 。因为生产量与厂房占地面积、生产资金占用成正比,如何能使生产增加而厂房资金不增或少增?惟一的途径就是加快产品的流转,儘量减少在制品、半成品的数量,如果以年产5000台钢琴,调音周期15天为例,总装配车间除工作占地,合理的半成品及通道占地以外,由于调音周期而静置的半成品占地,每台琴 按1.5平方米计算,需312平方米 。以每台需占资金按1,300元计算每月共需27万元,同时由于调音期间的往返运输造成的费用等,都是相当可观的,如果以6天为目标对调音周期进行改革,将使资金占用节约60%,占地面积也能相应减少,并减少了往返的运输费用,因此调音改革的经济意义是很大的 。设定调音周期的必要性任何一种产品的生产都要有一个合理的过程,其过程的长短取决于产品的材料结构、加工工艺的特性 。钢琴的结构决定了必须有适应其特点的生产周期,才能保证钢琴音準的稳定,而音準稳定是钢琴质量的重要标誌 。调音周期的设定是为了保证音準稳定性,但音準稳定性却又不仅是调音周期所能解决的 。这似乎是矛盾的,但却有着显而易见的道理,因为钢琴音準稳定的因素是多方面的(后面将详细论述),而调音周期仅仅是为了在正常情况下,使琴体结构、抗张强度合理的条件下,给各部件以适应设计张力要求的时间,从而达到一定程度的稳定 。张弦系统在巨大张力的作用下产生变形是不可避免的,只不过变形的程度不同而已,因此设定调音周期是必要的 。越是好的钢琴,张弦系统的设计越应考虑到受张力作用而产生的变形,应使其适应张力的保证了係数大,变形小,否则就不是好的设计 。若张弦系统抗张强度设计不合理,调音周期再长也不能弥补其不足 。因此,调音周期的设定前提是部件设计合理的条件下,满足各部件在一定时间範围内的变形而达到音準稳定的目的 。在设计合理的前提下,调音周期主要是为了使琴弦在张力的作用下停止延伸,这是调音周期所要解决的最主要的问题,琴弦经多长时间的拉伸才能基本稳定,是调音 周期长短的主要依据 。除琴弦延伸的特性外,还存在其他影响音準的因素,分析这些 因素并採取相应的措施,是提高音準水平的 关键 。影响音準的因素钢琴的设计準则就是为了取得音準、音 质、反应灵敏三项指标(外观装饰性等是大 多数产品的共性)这三项指标音準是基础 。任何一件乐器失去了音準就失去了使用价 值 。因此,为了保证音準的稳定在张弦结构 系统採取了很多措施,现仅就音準方面分析 如下 。1.铸铁支架对音準的影响铸铁支架是支撑弦列最重要的部分,以 立式琴为例,它要承受15-16吨的张力 。在 铁支架上张力的分布也不是非常均匀的,受 力的情况是非常複杂的,在受力比较集中的 部位(例如中高音分档处)如果设计强度未 相应加大,或加工中与木背架装配的不十分 準确,就会在弦的巨大张力下向前倾斜变 形 。变形越大,高音下降越多,当变形停止了 (超过变形的极限铸铁支架就将断裂),音高 下降才能停止 。因此,铸铁支架的设计要素 是变形小,其抗张强度要远远大于弦的张 力,并能抵抗琴弦的振动 。2.木背架对音準的影响木背架的作用是:一方面加固铸铁支架,另一方面用来装配其他部件 。它的稳固性如何,与铁支架的配合是否合理正确,对音準稳定性有很大影响 。常见一些旧琴木背架略向前弯曲变形的状况(新琴有时也有这种情况)就是因抵抗琴弦张力及铁支架变形造成的,甚至会出现背架开胶等缺陷,如无木支架的支撑,铁支架就将因较大变形而断裂(专门设计的无背架琴是在铁支架上採取了措施) 。木支架配製不合适就不能起到加固铁支架的作用,后果也是严重的 。3.弦轴板的配置对音準的影响弦轴板对音準稳定的影响极大,特别是 温湿度变化较大时极易造成音準变动 。轴板 应以优质硬木并按木材纹理的横、竖多层胶 合,经乾燥处理后加工而成,这是各製造钢 琴的工厂都严格遵守的 。易于忽略的问题是 轴与孔的配合 。弦轴是靠过盈配合紧固在轴 板上 。正确掌握过盈量不是一件容易的事,钻头磨得不正,会造成孔径加大,弦轴直径 不準、镀层薄厚也都会影响过盈量,另外,弦 轴加工滚扣深浅、螺距疏密、螺纹表面形状、 弦轴表面的油垢以及弦材质的不同,甚至钻 孔的速度,钻头排屑的好坏都影响弦轴的紧 固程度 。弦轴过松会造成音高不能保持,弦 轴过紧,近期影响是调音困难,远期影响将 会促成轴板开裂 。,4.音板对音畦的影响音板的作用是将从琴弦振动得到的能 量增强并辐射到空气中去 。为了使琴弦的 振动能量儘量少受损失的传导给音板,在 布置弦列时就要求弦对音板有个角度(通 常0.5度-2度 ),弦的曲折角度通过弦马对音板产生压力,在正常的弦张力**角度的状态 F对音板的总压力达到600kg 。为了抵抗这 个压力用略弯曲的肋木及框线来支撑音板,使其达到适度的球面以抵抗弦的压力,使音 板不致塌陷,肋木的截面尺寸,木材切向角 度,弯曲程度及年轮的疏密,对音板抗压强 度有影响 。抗压强度小,音板易塌陷音质易 变坏,抗压强度过大,受温湿度影响造成变 形而改变了弦的角度,也就改变弦的张力,音準即发生变化,要求肋木的抗压强度恰好 抵消弦的压力,要做到这一点对木材材质的 要求就过于苛刻了,这在大量生产的过程中是不经济的 。因此,琴弦对音板的压力与音 板抗压强度的不平衡必然引起音準的变化,这在一定程度上是不可克服的 。5.低音马桥对音準的影响为改善低音区的音质,在立式钢琴上低音弦马都设计有一排接板称为马桥板,其目的是为了避免弦马靠近音板边缘以增强低 频的振动及传播能力 。上面说过弦的曲折角度对音板造成压力,这个压力是通过弦马传导给音板的,低音是通过弦传给马桥,马桥再传给音板的,所以马桥先于音板承受压力,这时马桥所受压力总值约130ks 。在音板受外界条件影响而变形时,最敏感的是低音弦马角度的变化,其变化量与马桥的宽度成正比 。当然这里还存在着马桥材质强度不同,弦的张力在不同型号琴有所不同,弦马配製的高低不同形成弦的曲折角度不一样,对马桥压力也不同,音準的变化也有不同影响 。6.压弦条、马钉对音準的影响为了取得理想的音质,在布置弦列时採取了一系列措施,这些措施即可看做是对保持音準稳定的有效措施,也可认为是对音準有影响的因素 。在立式钢琴上,中、高音弦每根弦都可以分为六部分,受力的顺序是第二段,第三段,第四段,第五段,第六段,其中第四段是工作部分,称为有效振动部分 。在调音过程中,整根琴弦的张力往往是不平衡的,在弦紧张的过程中第二段张力值最大,因为弦在紧张过程中要克服压弦条及弦枕的摩擦力,压弦条角度越大,摩擦因数就越大,当弦拉紧到需要张力,加上压弦条摩擦因数,再加上弦枕摩擦因数,有效振动部分才能达到需要紧张程度,同样道理张力传到第五、六段,使整条弦张力趋于平衡 。但是这种张力平衡实现非技术纯熟的调律师很难做到,致使弦的有效振动部分暂时达到要求,其他部分或大于或小于要求张力,整条弦的张力处于不平衡状态 。时间稍长或弹奏振动后整条弦张力渐趋平衡,音準就会变化 。当然高明的调律师正是利用这些原理使整条弦达到平衡 。在一段时间内即使第二三五六弦段琴弦的张力有微弱的变化,由于各弦段结点的摩擦力,使音準也不会明显的变动 。低音弦的受力情况与中、高音略有不同,但原理相同 。7.温湿度对音準的影响凡是有经验的调律师都曾亲身体会到,一台精心调準的钢琴,转瞬间音準就会有较大变化,特别是低音区的变化更为明显,例如在一个房间将琴调好后,将琴移到另一温度不同的房间去(相差5cC以上),冬季在有暖气的房间将琴调好后,将门窗打开半小时后,音準便会有显着的变化 。当温度恢复到原来高度时,音準也会随之好转,但往往不能恢复原状,这是因琴弦各部分的张力平衡受到破坏造成的 。湿度的变化对音準的影响也是不应忽视的,因钢琴的构成体绝大部分是木质的,虽然在加工中进行了乾燥处理,却不能保证不受湿度的影响 。根据1981年第4期《乐器》发表的缪龙杰同志编译的《相对湿度和钢琴音高》一文介绍,美国华盛顿大学曾对一台小型三角钢琴进行了为期三年的监测 。监测期间既不弹奏也不调音,使琴任其自然地处于周围空气之中 。其湿度变化30%-60%之间,音高的变化平均达到12音分,即使湿度变化仅发生在几天之中,钢琴的音高也会受到影响 。文章的结论是“湿度变化範围越大就意味着钢琴音高的波动越大” 。“湿度波动始终是钢琴音高的大敌,无论乐器使用与否都是如此” 。8.琴弦对音準的影响琴弦对音準的影响有多大,是确定合理的调音周期的关键因素,因此,多数技术人员对琴弦在张力作用下产生的物理性伸长非常重视,而这个课题以前未专门进行综合研究,所以没有可靠的数据可供参考,调音周期是依前人经验来稳定的 。弦的品质与音準有关係,在国外琴钢丝已经作为一种专用材料来进行生产,专门供做琴弦使用 。但即使是这种弦,在强大的张力作用下也会有所伸长,这种现象称“张弛” 。是因钢丝的可塑性引起的不可避免的现象 。弦的塑性变形导致弦的应力减小频率降低 。这种塑性变形的时间长短是设定调音周期的理论根据,因为上述七种影响音準的因素前六种均为设计强度,加工精度,材料对自然环境的适应程度所决定的 。如果设计强度不够,加工精度不良,温湿度条件的改变使音準受到影响,延长调音周期也不能保证音準的稳定 。所以音準稳定是综合条件反映,调音周期只反映了音準稳定中的一个方面,这个方面又是以琴弦的塑性变形为主要方面,其他方面可以通过设计和加工工艺解决 。调音周期的合理设定根据以上论及的有关音準的因素来分析,在钢琴的生产过程中结构的适应性变形是不可避免的,因此调音周期的设定是有必要的,问题在于周期的长短,调音次数的多少,以及全部调音过程在工艺过程中的安爿) 。在保证音準质量前提下,最短周期是多少?最少的调音次数是几次?有何理论根据?这是本文的宗旨 。据了解我国几家钢琴厂在钢琴生产过程中对调音周期都有要求,一般是从拨第一遍音开始到出厂共调6次,周期在12—15天(有的厂家执行此周期很严格,有的不甚严格) 。这个调音次数、周期的设定是经验所得 。在20世纪50年代调音周期为24天,60年代也是由笔者通过实践取得成功改为15天 。从24天改为15天缩短了三分之一,音準质量并未显示出明显的下降 。随着生产的发展,15天也不能适应生产了,又迫使进行改革,而这种改革既是迫切需要的,也是完全可行的 。据我厂技术人员出国考查及有关资料反映,国外钢琴生产已成为流水线方式,有的月产量达到万台以上 。如设定15天调音周期,将有5000台琴作为周转,其所占地面积,积压的资金之巨大是可想像的,实际上是在流水线生产过程进行调音,成品完成即可出厂,中间无静置期 。据反映琴行中及顾客家中还进行调音,但那是另一回事 。国外的情况只是为我们提供了缩短调音周期可行性的启迪,加以套用还需结合我们的具体生产方式及质量情况进行分析研究 。1.主观分析①张弦系统各部件存在张力作用下的合理变形,这种变形与张力的大小成正比 。张力加大变形时间加速;②张力作用于琴弦时,弦的塑性变形使弦的应力降低,张力下降,音高下降 。在取得经测定的客观的下降张力值以后,以下降的值作为参数用以修正设计张力值,就可达到要求张力,从而保证音準高度;③部件结构强度的设计应能满足所增加的张力值(以音準升高50音分计算仅约占设计张力的7%);④加工精度不良,调音技术不佳是主观因素,应另求解决的途径;⑤温湿度影响造成木部件变形(除应乾燥处理的因素)是不可克服的,这也是钢琴不断使用不断调音的原因,无法以周期加以解决 。2.琴钢丝实验琴钢丝的塑性变形是影响调音周期的重要因素,对钢丝进行实验测定是确定调音周期的客观依据 。目前这方面的资料不多,对钢丝进行全面物理测定是很繁重的工作,它涉及的方面有钢丝的化学成分、弦的强度、弦的张弛、弦的可塑性程度、椭圆度、弦的应力等 。在北京乐器研究所研究二室薛工程师的主持下我们做了钢琴弦强度试验,钢丝拉伸试验 。强度试验试件选用的是德国产琴钢丝,规格为:+0.925、d,O.875、,bO.800mm三种,所以选用此号弦是因为在钢琴生产的实践中这部分的音準下降最为显着 。通过试验得出数据为:(3)与上述条件相同但在钢丝张紧后在其侧面加压(偏移量6-8mm)三次后再次调至要求载荷 。①载入75.5kg,加压三次,载荷下降数0.5kg,24小时后张力值下降数:0.02kg 。② ②载入74.2kg,加压三次,载荷下降数0.1kg,24小时后张力值下降数0 。拉伸试验数据为:张力 应力 试验:张力(拉断时) 应力(拉断时)a2:710N 105.31kg/ a2:161.6kg 241.2kg每弦做3次取平均值a3;715N 118.57kg/ a3;139.4kg 232.3kg每弦做3次取平均值a4;674N 134.68kg/ a4:123.1kg 246.2kg每弦做3次取平均值以a2的设计条件:钢丝Φ0.925mm(联邦德国产品)张力71kg 。1小时载荷下降数为0.10kg4小时载荷下降数为0.15kg6小时载荷下降数为0.17kg24小时载荷下降数为0.30kg(重新调音)72小时载荷下降数为0.05kg(重新调音层)96小时载荷下降数为0 稳定120小时载荷下降数为0 稳定144小时载荷下降数为0 稳定(2)与上述条件相同,但张力为75.5kg(880/Hz+50音分) 。1小时载荷下降数为0.10kg4小时载荷下降数为0.15kg6小时载荷下降数为0.15kg24小时载荷下降数为0.20kg(重新调音)48小时载荷下降数为0.10kg72小时载荷下降数为0 调至73.4kg、880Hz+25音分96小时载荷下降数为0 调至73.4kg、880Hz+25音分120小时载荷下降数为0 调至73.4kg、880Hz+25音分144小时载荷下降数为0 调至73.4kg、880Hz+25音分(3)与上述条件相同但在钢丝张紧后在其侧面加压(偏移量6-8mm)三次后再次调至要求载荷 。①载入75.5kg,加压三次,载荷下降数0.5kg,24小时后张力值下降数:0.02kg 。②载入74.2kg,加压三次,载荷下降数0.1kg,24小时后张力值下降数0 。共做144小时以下均与②相同从略 。通过上述试验数据可以证明:(1)琴弦的抗张强度、应力大于设计要求100%,在设计基础上提高张力(频率升高)加速弦的衰变是完全可能的 。(2)琴弦的张力值的下降仅为0.63%,比教科书所载的3%要少得多,应是现代钢丝製造工艺提高所致 。(3)在设计张力的作用下琴弦的延伸在三昼夜即可停止,停止后继续拉伸三天无变化,‘证明张力不变的情况下音準不变,实际音準变化与琴弦无关 。(4)张力下降值与张力成反比,张力越大,张力下降值越小,下降的速度越快 。(5)在弦张紧的同时对弦侧面加压(瞬间加大琴弦的张力)有助于琴弦的延伸 。3.缩短周期的实物试验任何被长期实践证明是行之有效的东西,都必有它的理论依据,理论指导下的实践又必将使实践向前发展 。钢琴生产的长期实践告诉我们现行的调音周期是行之有效的方法,但也不是已经完善了的方法,还大有改革挖潜的余地 。根据目前的生产工艺,调音周期若改为6天就能满足需要,所以我们以6天为目标进行周期改革试验,由装配车间调音技工协助,共试验了三批琴,第一批试验3台琴,第二批试验6台,第三批21台 。前两批试验中发现初调后音高下降平均80音分,在调第三次音时才达到标準音高 。在第三批试验时採取了相应的技术措施,实验结果表明:21台试验6天周期的琴全部调音完成后12天测试基準组平均有0.7个不準(超过±3音分),八度有6个不和谐 。另以10台15天周期的琴调完音后12天测试,基準组平均1.6个不準,八度9个不和谐 。从实物试验效果来看6天周期比14天周期还好,试验过程中操作者比较认真的因素是存在的,但除去这些因素也完全可以证明这一方法是可行的 。4..结论(1)钢琴的音準稳定性如何,取决于张弦系统主要部件的设计结构、材质、加工精度,音準稳定性的影响主要取决于张弦系统的抗张强度 。(2)调音周期是为琴弦张弛、部件变形而设定的,琴弦张弛情况已为琴弦的拉伸试验所证明 。结构变形通过实物试验得到了初步证明(可採用更先进的方法进一步证明其最短变形时间),缩短调音周期完全可行 。(3)调音周期最短时间的确定取决于工艺措施,只要措施得当,无静置周期也无不可 。但即使按现行工艺标準只要在生产过程中,音高不低于标準高度,调音周期4-6天不会对音準稳定产生任何影响 。(4)调音的次数与周期长短有关,生产周期长的较高档的大型琴调音次数应不少于6-8次(特别是大型三角钢琴),小型普及琴可以调5-6次 。这是因大型琴琴身较大、琴弦较长,变形相对增大,反之小型琴琴身小、变形亦相对减少,调音次数及周期可以相应减少 。
- 菲律宾女佣
- 高宫钢太郎
- 法律纠纷处理一本通-拆迁法律纠纷处理一本通
- 李商隐创作五律 江上
- 血酬定律
- 2010国家司法考试法律法规彙编便携本
- 奇幻魔法Melody:转转旋律魔法牌
- 邱靖贻
- 中华人民共和国常用法律大全
- 1980年出品菲律宾电影 诱惑岛