文章插图
如何高效学数学【如何高效学数学】《如何高效学数学》是2014年机械工业出版社出版的图书,作者是肖林元 。
基本介绍书名:如何高效学数学:国中版
作者:肖林元
ISBN:978-7-111-46848-6
定价:32.8
出版社:机械工业出版社
出版时间:2014-06
装帧:平装
开本:1/16
内容简介本书根据教育部《全日制义务教育数学课程标準》精神,由一批知名数学特级教师编写,是专为国中生如何高效学数学而量身定做的,全国各版本教材通用 。本书的最大特色是不囿于普通的习题集,而是通过经典例题和案例的阐述,帮助国中生提高数学思维和解题能力,掌握数学学习的方法和技巧,从根本上提高数学学习成绩,从而真正学会数学,爱上数学 。书中例题多选自全国各地最新的中考试题和模拟试题,所有例题难度均贴近中考难度,并依据知识点进行了分类,读者可根据自己的学习进度,选择合适的例题阅读学习 。本书是国中生必备的数学学习宝典,能常阅常新,内容涵盖了国中数学学习所需的基本方法、技巧和思维,适合国中各年级学生使用 。初一学生可将其作为国中数学入门书,初二学生可将其作为国中数学複习书,初三学生可将其作为中考数学备考书 。本书还特别适合家长和孩子共同阅读,是家长辅导孩子学数学的全能工具书 。本书对提高中青年教师的教学水平也大有裨益 。章节目录前 言如何使用本书第一章 认识篇一、数学是什幺 //(一)数学是什幺 //(二) 用数学的眼光看问题 //1. 数学很有用 //2. 数学很好玩 //3. 数学学习会使你的思维更严谨 //4. 数学使你变聪明 //二、数学有哪些显着的特点 //1. 高度抽象性 //2. 逻辑严密性 //3. 广泛套用性 //三、国中数学学什幺 //(一)国中数学学什幺 //1. 内容 //2. 知识结构 //3. 思想方法 //4. 能力培养 //(二)案例分析 //1. 字母表示数 //2. 从“算术法”到“方程” //第二章 兴趣篇一、为什幺说学好中学数学尤其需要培养兴趣 //(一)兴趣是最好的老师 //(二)数学是一门特殊的学科 //(三)学好国中数学的关键是兴趣 //二、培养兴趣有哪些主要策略 //(一)数学学习生活化 //(二)数学学习情感化 //1. 人生理想教育 //2. 喜爱数学老师 //(三)增强数学学习的自信心 //1. 重视概念的学习,加深对数学基本概念和公式的理解 //2. 掌握数学的基本思想和通性通法 //(四)树立数学学习的好榜样 //(五)充分感受数学美 //1. 数学的对称美——两岸青山相对出 //2. 数学的和谐美——浓妆淡抹总相宜 //3. 数学的奇异美——塞下秋来风景异 //4. 数学的简洁美——看似寻常最奇崛 //5. 数学的数字美——一枝红杏出墙来 //6. 数学的符号美——万紫千红总是春 //(六)充分认识数学学习的核心价值 //第三章 习惯篇一、数学学习习惯是什幺 //二、数学学习习惯有哪些 //三、怎样培养数学学习习惯 //(一)自主学习的习惯 //1. 预习的习惯 //2. 複习的习惯 //3. 反思的习惯 //4. 纠错的习惯 //5. 做题的习惯 //(二)课堂学习的习惯 //1. 欣赏老师的习惯 //2. 专注倾听的习惯 //3. 记课堂笔记的习惯 //4. 积极思考的习惯 //第四章 方法篇一、数学思想方法是什幺 //二、常见的数学思想方法有哪些 //三、如何掌握数学思想方法 //(一)学会分类 //1. 在“数与代数”领域需要分类的问题 //2. 在“空间与图形”领域需要分类的问题 //3. 在综合性背景中需要分类的问题 //(二)学会转化和化归 //1. 複杂问题向简单问题转化 //2. 已知与未知的转化 //3. 正面与反面的转化 //4. 数与形的转化 //5. 一般与特殊的转化. //6. 动与静的转化. //(三)学会数形结合 //1. 以形助数,藉助于几何直观阐明数之间的关係 //2. 以数释形,藉助于数的精确性阐明形的某些属性 //3. 数形对照,抽象的数学语言与几何直观相结合 //(四)学会建模 //1. 建立适当数学模型解决实际问题 //2. 利用函式模型解决最值问题 //四、掌握数学方法的几点注意 //1. 求教与自学相结合 //2. 学习与思考相结合 //3. 学习与运用相结合 //4. 模仿与创新相结合 //第五章 考试篇一、重视考试内容 //(一)如何审题 //1. 读思写画并举 //2. 找準关键字 //3. 挖掘隐含条件 //4. 排除干扰条件 //5. 识别题目中的“陷阱” //6. 联繫实际 //(二)如何解题 //1. 解选择题的方法 //2. 解填空题的方法 //3. 解简答题的方法 //(三)如何书写 //1. 关注书写的规範 //2. 关注按步骤给分 //3. 关注书写的清楚 //(四)如何检验 //1. 取特殊值检验 //2. 代入检验 //3. 换一种方法检验 //二、调节考试心理 //(一)积极暗示,强化自信 //(二)适度紧张,最佳化情绪 //(三)把握节奏,潜心解题 //1. 两慢两快 //2. 四先四后 //(四)分步分解,从容应对 //第六章 能力篇一、什幺是数学能力 //二、数学能力有哪些 //三、如何提高数学能力 //(一)如何提高运算能力 //1. 悟清算理 //2. 熟练算法 //3. 善于转化 //(二)如何提高逻辑思维能力 //1. 什幺是逻辑思维能力 //2. 注重逻辑思维的培养 //3. 掌握逻辑思维的基本方法 //4. 培养合情推理的能力 //5. 形成良好的数学思维品质 //(三)如何提高空间想像能力 //1. 空间想像能力包括哪些 //2. 从观察实物图形中定性图形 //3. 从操作实物图形中定量图形 //4. 从理性分析中揭示图形体质 //5. 从模拟操作中再现图形结构 //(四)如何提高迁移能力 //1. 数学认知的迁移 //2. 数学技能的迁移 //3. 数学思维方法的迁移 //4. 数学学习策略的迁移 //5. 数学活动经验的迁移 //6. 克服数学学习的负迁移 //第七章 文化篇一、数学为我们提供了什幺 //(一)提供了理性精神 //(二)提供了思维方法 //(三)提供给我们足够的自信 //(四) 让我们知道什幺是信仰 //(五) 信仰与理性矛盾吗 //(六)我们还需要感性吗 //(七)用理性来指导感性 //二、数学能让我们做什幺 //(一)数学能极大地提高我们的认识能力 //(二)数学能让我们预测未知的世界 //(三)你知道通向无穷的路只有一条吗 //三、数学史上发生过哪些重大的事情 //(一)古代的东方数学与西方数学各有什幺特点 //1. 经典之作的比较 //2. 数学特点的比较 //(二)割圆术为什幺伟大 //1. 为什幺圆周率的精确度能代表一个民族的数学水平 //2. 为什幺用实验法求圆周率不能达到高水平 //3. 割圆术优越在哪里 //(三) 数学史上的三次危机 //1. 第一次数学危机──无理数的发现 //2. 第二次数学危机──无穷小是零吗 //3. 第三次数学危机——罗素悖论 //(四)古希腊的三大尺规作图问题 //1. 倍立方体问题 //2. 三等分任意角问题 //3. “化圆为方”问题 //(五) 数学史上的四大天王 //1. 数学之神——阿基米德 //2. 科学巨人——牛顿 //3. 数学王子——高斯 //4. 大家的导师——欧拉 //四、数学思维能力测量表 //
- 在职攻读硕士学位全国联考英语辅导丛书综合教程
- 数学-二年级下册-人教版义务教育课程标準实验教科书-同步解析?
- 刘迺发
- 不乖:哈佛导师的自我突破心理学
- 固镇县特殊教育学校
- 滕州市东沙河中学
- 穗花系
- 莆田学院外国语学院
- 怀化学院中小企业财务管理研究所
- 鸦属