整理 | 郑丽媛
出品 | CSDN(ID:)
由掀起的这场 AI 革命,令人们感慨神奇的同时,也不禁发出疑问:AI 究竟是怎么做到这一切的?
此前,即便是专业的数据科学家,都难以解释大模型(LLM)运作的背后 。而最近,似乎做到了——本周二,发布了其最新研究:让 GPT-4 去试着解释 GPT-2 的行为 。
即:让一个 AI “黑盒”去解释另一个 AI “黑盒” 。
工作量太大,决定让 GPT-4 去解释 GPT-2
之所以做这项研究的原因,在于近来人们对 AI 伦理与治理的担忧:“语言模型的能力越来越强,部署也越来越广泛,但我们对其内部工作方式的理解仍然非常有限 。”
由于 AI 的“黑盒”性质,人们很难分辨大模型的输出结果是否采用了带有偏见性质的方法,也难以区分其正确性,因而“可解释性”是亟待重要的一个问题 。
AI 的发展很大程度上是在模仿人类,因而大模型和人脑一样,也由神经元组成,它会观察文本规律进而影响到输出结果 。所以想要研究 AI 的“可解释性”,理论上要先了解大模型的各个神经元在做什么 。
按理来说,这本应由人类手动检查,来弄清神经元所代表的数据特征——参数量少还算可行,可对于如今动辄百亿、千亿级参数的神经网络,这个工作量显然过于“离谱”了 。
于是,灵机一动:或许,可以用“魔法”打败“魔法”?
“我们用 GPT-4 为大型语言模型中的神经元行为自动编写解释,并为这些解释打分 。”而 GPT-4 首次解释的对象是 GPT-2,一个发布于 4 年前、神经元数量超过 30 万个的开源大模型 。
让 GPT-4 “解释” GPT-2 的原理
具体来说,让 GPT-4 “解释” GPT-2 的过程,整体分为三个步骤 。
(1)首先,让 GPT-4 生成解释,即给出一个 GPT-2 神经元,向 GPT-4 展示相关的文本序列和激活情况,产生一个对其行为的解释 。
如上图所示,GPT-4 对 GPT-2 该神经元生成的解释为:与电影、人物和娱乐有关 。
(2)其次,再次使用 GPT-4,模拟被解释的神经元会做什么 。下图即 GPT-4 生成的模拟内容 。
(3)最后,比较 GPT-4 模拟神经元的结果与 GPT-2 真实神经元的结果,根据匹配程度对 GPT-4 的解释进行评分 。在下图展示的示例中,GPT-4 得分为 0.34 。
通过这样的方法,共让 GPT-4 解释了 GPT-2 中的个神经元,其中大多数解释的得分很低,只有超过 1000 个神经元的解释得分高于 0.8 。
在官博中,承认目前 GPT-4 生成的解释并不完美,尤其在解释比 GPT-2 规模更大的模型时,效果更是不佳:“可能是因为后面的 layer 更难解释 。”
尽管绝大多数解释的得分不高,但认为,“即使 GPT-4 给出的解释比人类差,但也还有改进的余地”,未来通过 ML 技术可提高 GPT-4 的解释能力,并提出了三种提高解释得分的方法:
值得一提的是,以上这些解释数据集、可视化工具以及代码,都已在上开源发布:“我们希望研究界能开发出新技术以生成更高分的解释,以及更好的工具来使用解释探索 GPT-2 。”
( 地址:)
“再搞下去,AI 真的要觉醒了”
除此之外,还提到了目前他们采取的方法有很多局限性,未来需要一一攻克:
在博文的最后,展望道:“我们希望将我们最大的模型解释为一种在部署前后检测对齐和安全问题的方式 。然而,在这些技术能够揭露不诚实等行为之前,我们还有很长的路要走 。”
对于的这个研究成果,今日在国内外各大技术平台也引起了广泛关注 。
有人在意其得分不佳:“对 GPT-2 的解释都不行,就更不知道 GPT-3 和 GPT-4 内部发生了什么,但这才是许多人更关注的答案 。”有人感慨 AI 进化的方式愈发先进:“未来就是用 AI 完善 AI 模型,会加速进化 。”也有人担心 AI 进化的未来:“再搞下去,AI 真的要觉醒了 。”
- 廉颇为何会成战国四大名将最后还是郁郁而终
- 做好“关键基础设施提供商”角色,亚马逊云科技加快生成式AI落地
- 2023“评分最高”的10部剧,《他是谁》第五,《狂飙》仅能排第三 世界十大正剧
- 全球首例!日媒宣布量子领域突破,外媒:请东南大学“鉴定”一下 世界十大突破
- 病死率排前5!紧急提醒:此病进入高发季,可“无症状携带”!防治措施↘ 世界十大重症
- 中国最长的河流之一,被誉为“中华民族的母亲河” 中国之最歌曲曲
- 歪歪巅峰十年公会“势力”大揭秘,谁才是笑到最后的人?上 中国之最辉煌篇
- 2009年,湖南女子产下“怪胎”,母亲知道真相后痛哭失声 袖珍夫妻吉尼斯记录
- 最蠢的“吉尼斯纪录”:美一城市放飞近150万气球,结果却悲剧了 最蠢吉尼斯记录
- 中国历史上“最接近神”的七大人物,您看如何为他们排名次? 历史上八卦之最