最小均方算法【最小均方算法】最小均方算法,简称LMS算法,是一种最陡下降算法的改进算法, 是在维纳滤波理论上运用速下降法后的最佳化延伸,最早是由 Widrow 和 Hoff 提出来的 。该算法不需要已知输入信号和期望信号的统计特徵,“当前时刻”的权係数是通过“上一 时刻”权係数再加上一个负均方误差梯度的比例项求得 。其具有计算複杂程度低、在信号为平稳信号的环境中收敛性好、其期望值无偏地收敛到维纳解和利用有限精度实现算法时的平稳性等特性,使LMS算法成为自适应算法中稳定性最好、套用最广的算法 。
基本介绍中文名:最小均方算法
外文名:Least Mean Square
别称:LMS算法
用途:自适应滤波算法
设计者:Widrow、Hoff
算法思想主要在增加很少运算量的情况下能够加速其收敛速度,这样在自适应均衡的时候就可以很快的跟蹤到信道的参数,减少了训练序列的传送时间,从而提高了信道的利用率 。算法导出1955-1966 期间,美国史丹福大学的Widrow 和Hoff在为美国通用公司研製天线的过程中,提出了基本Least Mean Square Algorithm,即所谓LMS算法 。LMS算法的準则是使均方误差达到最小,即期望信号与滤波器实际输出之差的平方的期望值
文章插图
达到最小,并且依据这个準则来修改权係数向量W(n),这被称为MSE準则 。Widrow 和Hoff提出了求解Wopt的近似方法,习惯上称为Widrow-HoffLMS算法 。基本原理根据小均方误差準则以及均方误差曲面,自然的我们会想到沿每一时刻均方误差的陡下降在权向量面上的投影方向更新,也就是通过目标函式ξ(k)的反梯度向量来反覆叠代更新 。由于均方误差性能曲面只有一个极小值,只要收敛步长选择恰当,不管初始权向量在哪,后都可以收敛到误差曲面的小点,或者是在它的一个邻域内 。这种沿目标函式梯度反方向来解决小化问题的方法,我们一般称为速下降法,表达式如下:
文章插图
基于随机梯度算法的小均方自适应滤波算法的完整表达式如下:
文章插图
文章插图
文章插图
LMS自适应算法是一种特殊的梯度估计,不必重複使用数据,也不必对相关矩阵和互相关矩阵进行运算,只需要在每次叠代时利用输入向量和期望回响,结构简单,易于实现 。虽然LMS收敛速度较慢,但在解决许多实际中的信号处理问题,LMS算法是仍然是好的选择 。性能分析随机梯度LMS算法的性能前人有过大量研究,按照前一章所提到的自适应滤波性能指标,假设输入信号和期望信号具有联合平稳性,详细讨论基于横向FIR结构的滤波器的标準LMS算法的四个性能:
- 收敛性;
收敛速度;
稳态误差;
计算複杂度 。