第六节,我们使用结核病基因数据,做了一个数据预处理的实操案例 。例子中结核类型,包括结核,潜隐进展,对照和潜隐,四个类别 。第七节延续上个数据,进行了差异分析 。第八节对差异基因进行富集分析 。本节进行WGCNA分析 。
WGCNA分析 分段代码(附运行效果图)请查看上节
运行后效果
文章插图
【十GEO生信数据挖掘肺结核数据-差异分析】
rm(list = ls()) ######清除环境数据#============================================================================#======================================================================#+========step0数据预处理和检查,已经做过step0==========================#+========================================#+============================="""##############设置工作路径###################workingDir = "C:/Users/Desktop/GSE152532"############工作路径,可以修改,可以设置为数据存放路径setwd(workingDir)getwd()################载入R包########################library(WGCNA)library(data.table)#############################导入数据########################### The following setting is important, do not omit.options(stringsAsFactors = FALSE)#Read in the female liver data setfpkm = fread("Gene_expression.csv",header=T)##############数据文件名,根据实际修改,如果工作路径不是实际数据路径,需要添加正确的数据路径# Take a quick look at what is in the data setdim(fpkm)names(fpkm)####################导入平台数据##########################library(idmap2)ids=get_soft_IDs('GPL10558')head(ids)#####################将探针ID改为基因ID##########################fpkm<-merge(fpkm,ids,by='ID')#merge()函数将dat1的探针id与芯片平台探针id相匹配,合并到dat1library(limma)fpkm<-avereps(fpkm[,-c(1,99)],ID=fpkm$symbol)#多个探针检测一个基因,合并一起,取其平均值fpkm<-as.data.frame(fpkm)#将矩阵转换为表格write.table(fpkm, file="FPKM_genesymbol.csv",row.names=T, col.names=T,quote=FALSE,sep=",")###结束后查看文件,进行修改!!!# 加载自己的数据# load( "group_data_TB_LTBI.Rdata")load("exprSet_clean_mean_filter_log1.RData")#exprSet_cleanload( "dataset_TB_LTBI.Rdata")exprSet_clean = dataset_TB_LTBIgene_var <- apply(exprSet_clean, 1, var)##### 计算基因的方差keep_genes <- gene_var >= quantile(gene_var, 0.75)##### 筛选方差较大的基因,选择方差前25%的基因exprSet_clean <- exprSet_clean[keep_genes,]##### 保留筛选后的基因dim(exprSet_clean)save (exprSet_clean,file="方差前25per_TB_LTBI.Rdata")#######################基于方差筛选基因#################################fpkm_var <- read.csv("FPKM_genesymbol.csv", header = TRUE, row.names = 1)##### 读入表达矩阵,矩阵的行是基因,列是样本gene_var <- apply(fpkm_var, 1, var)##### 计算基因的方差keep_genes <- gene_var >= quantile(gene_var, 0.75)##### 筛选方差较大的基因,选择方差前25%的基因fpkm_var <- fpkm_var[keep_genes,]##### 保留筛选后的基因write.table(fpkm_var, file="FPKM_var.csv",row.names=T, col.names=T,quote=FALSE,sep=",")###结束后查看文件,进行修改!!!##################重新载入数据######################### The following setting is important, do not omit.options(stringsAsFactors = FALSE)#Read in the female liver data setfpkm = fread("FPKM_var_filter.csv",header=T)##############数据文件名,根据实际修改,如果工作路径不是实际数据路径,需要添加正确的数据路径# Take a quick look at what is in the data setdim(fpkm)names(fpkm)datExpr0 = as.data.frame(t(fpkm[,-1]))names(datExpr0) = fpkm$ID;##########如果第一行是ID命名,就写成fpkm$IDrownames(datExpr0) = names(fpkm[,-1])##################check missing value and filter ####################load("方差前25per_TB_LTBI.Rdata")datExpr0= exprSet_clean##check missing valuelibrary(WGCNA)gsg = goodSamplesGenes(datExpr0, verbose = 3)gsg$allOKif (!gsg$allOK){# Optionally, print the gene and sample names that were removed:if (sum(!gsg$goodGenes)>0)printFlush(paste("Removing genes:", paste(names(datExpr0)[!gsg$goodGenes], collapse = ", ")))if (sum(!gsg$goodSamples)>0)printFlush(paste("Removing samples:", paste(rownames(datExpr0)[!gsg$goodSamples], collapse = ", ")))# Remove the offending genes and samples from the data:datExpr0 = datExpr0[gsg$goodSamples, gsg$goodGenes]}##filter#meanFPKM=0.5####过滤标准,可以修改#n=nrow(datExpr0)#datExpr0[n+1,]=apply(datExpr0[c(1:nrow(datExpr0)),],2,mean)#datExpr0=datExpr0[1:n,datExpr0[n+1,] > meanFPKM]# for meanFpkm in row n+1 and it must be above what you set--select meanFpkm>opt$meanFpkm(by rp)filtered_fpkm=t(datExpr0)#行 样本 列 基因filtered_fpkm=data.frame(rownames(filtered_fpkm),filtered_fpkm)names(filtered_fpkm)[1]="sample"write.table(filtered_fpkm, file="FPKM_filter.csv",row.names=F, col.names=T,quote=FALSE,sep="\t")"""#&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&+&&&&&&&&&&&&&&&&&&加载数据&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++load('DEG_TB_LTBI_step13.Rdata')# DEG,res,all_diff,limma_clean_res,dataset_TB_LTBI_DEG,#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++#+&&&&&&&&&&&&&&&&&&加载数据&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&library(WGCNA)#读取目录名称,方便复制粘贴dir()#============================================================================#======================================================================#+========step1样品聚类step1=================================#+========================================#+=============================################################样品聚类#################### #这里行是样品名,列为基因名,做转置处理datExpr = t(dataset_TB_LTBI_DEG)#初次聚类sampleTree = hclust(dist(datExpr), method = "average")# Plot the sample tree: Open a graphic output window of size 20 by 15 inches# The user should change the dimensions if the window is too large or too small.#设置绘图窗口sizeGrWindow(12,9)pdf(file='1_sampleCluestering_初次聚类检查偏离样本.pdf',width = 12,height = 9)par(cex=0.6)par(mar=c(0,4,2,0))plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.lab = 1.5,cex.axis = 1.5, cex.main = 2)dev.off()#============================================================================#======================================================================#+========step2切割离群样本=================================#+========================================#+=============================pdf(file='2_sampleCluestering_初次聚类进行切割删除样本.pdf',width = 12,height = 9)par(cex=0.6)par(mar=c(0,4,2,0))plot(sampleTree, main = "Sample clustering to detect outliers ", sub="", xlab="", cex.lab = 1.5,cex.axis = 1.5, cex.main = 2)### 测试画线,可以多次尝试##############剪切高度问题,这个根据实际设置后可用abline(h = 87, col = "red")##剪切高度不确定,故无红线dev.off()### Determine cluster under the lineclust = cutreeStatic(sampleTree, cutHeight = 87, minSize = 10)table(clust)#clust#012 #5 57 40#由于本人案例,一刀切出三段,需要保留两段,用了’或‘逻辑运算符号### 需要保留哪个,就传如要保留clust编号keepSamples = (clust==1|clust==2)#剔除离群样本datExpr0 = datExpr[keepSamples, ]#观察新表达矩阵dim(datExpr0) #[1]97 2813#&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&+&&&&&&&&&&&&&&&&&&数据保存&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++save(datExpr0,file='3.聚类后剔除离群样本datExpr0.Rdata')#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++#+&&&&&&&&&&&&&&&&&&数据保存&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&load('datExpr0_cluster_filter.Rdata')#============================================================================#======================================================================#+========step3临床性状数据整理,与新表达矩阵保持一致=================================#+========================================#+=============================#加载自己的临床性状数据load('design_TB_LTBI.Rdata')traitData=http://www.kingceram.com/post/designdim(traitData)# Form a data frame analogous to expression data that will hold the clinical traits.fpkmSamples = rownames(datExpr0)traitSamples =rownames(traitData)#匹配样本名称,性状数据与表达数据保证一致traitRows = match(fpkmSamples, traitSamples)datTraits = traitData[traitRows,]rownames(datTraits) collectGarbage()#&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&+&&&&&&&&&&&&&&&&&&数据保存&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++save(datTraits,file='4.剔除离群样本的临床性状数据datTraits.Rdata')#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++#+&&&&&&&&&&&&&&&&&&数据保存&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&============================================================================#======================================================================#+========step4 增加临床性状数据后再次聚类=======================#+========================================#+=============================# Re-cluster samplessampleTree2 = hclust(dist(datExpr0), method ="average")# Convert traits to a color representation: white means low, red means high, grey means missing entrytraitColors = numbers2colors(datTraits, signed = FALSE)# Plot the sample dendrogram and the colors underneath.#sizeGrWindow(20,20)pdf(file="5_Sample cluster dendrogram and trait heatmap.pdf",width=12,height=12)plotDendroAndColors(sampleTree2, traitColors,groupLabels = names(datTraits),main = "Sample dendrogram and trait heatmap")#Error in .plotOrderedColorSubplot(order = order, colors = colors, rowLabels = rowLabels,: #Length of colors vector not compatible with number of objects in 'order'.dev.off()#============================================================================#======================================================================#+========step5 构建WGCNA网络=======================#+========================================#+=============================# Allow multi-threading within WGCNA. At present this call is necessary.# Any error here may be ignored but you may want to update WGCNA if you see one.# Caution: skip this line if you run RStudio or other third-party R environments.# See note above.#检查环境,能开几个线程enableWGCNAThreads()# Choose a set of soft-thresholding powers#设置阈值范围,WGCNA是无标度网络(scale free),节点连结数服从幂次定律分布 。(连接数越多核心节点越少)powers = c(1:15)# Call the network topology analysis function#网络拓扑分析sft = pickSoftThreshold(datExpr0, powerVector = powers, verbose = 5)# Plot the results:sizeGrWindow(15, 9)pdf(file="6_Scale independence选阈值测试过程.pdf",width=9,height=5)#pdf(file="Rplot03.pdf",width=9,height=5)par(mfrow = c(1,2))cex1 = 0.9# Scale-free topology fit index as a function of the soft-thresholding power#无标度拓扑拟合指标作为软阈值能力的函数,根据下图结果,挑选合适阈值plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],xlab="Soft Threshold (power)",ylab="Scale Free Topology Model Fit,signed R^2",type="n",main = paste("Scale independence"));text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],labels=powers,cex=cex1,col="red");# this line corresponds to using an R^2 cut-off of habline(h=0.90,col="red")# Mean connectivity as a function of the soft-thresholding powerplot(sft$fitIndices[,1], sft$fitIndices[,5],xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",main = paste("Mean connectivity"))text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, cex=cex1,col="red")dev.off()######chose the softPower#选择阈值softPower =sft$powerEstimateadjacency = adjacency(datExpr0, power = softPower)##### Turn adjacency into topological overlap#将邻接转换为拓扑重叠TOM = TOMsimilarity(adjacency);dissTOM = 1-TOM# Call the hierarchical clustering function#无标度网络阈值参数确定后,调用分层聚类函数#基于TOM的不相似性基因聚类geneTree = hclust(as.dist(dissTOM), method = "average");# Plot the resulting clustering tree (dendrogram)#sizeGrWindow(12,9)pdf(file="7_Gene clustering on TOM-based dissimilarity基因聚类图.pdf",width=12,height=9)plot(geneTree, xlab="", sub="", main = "Gene clustering on TOM-based dissimilarity",labels = FALSE, hang = 0.04)dev.off()#聚类模块,最小的基因数量# We like large modules, so we set the minimum module size relatively high:minModuleSize = 30# Module identification using dynamic tree cut:#使用dynamic tree cut进行模块识别dynamicMods = cutreeDynamic(dendro = geneTree, distM = dissTOM,deepSplit = 2, pamRespectsDendro = FALSE,minClusterSize = minModuleSize);table(dynamicMods)# Convert numeric lables into colors#给不同模块分配颜色dynamicColors = labels2colors(dynamicMods)table(dynamicColors)# Plot the dendrogram and colors underneath#sizeGrWindow(8,6)pdf(file="8_带颜色标识的聚类树Dynamic Tree Cut.pdf",width=8,height=6)plotDendroAndColors(geneTree, dynamicColors, "Dynamic Tree Cut",dendroLabels = FALSE, hang = 0.03,addGuide = TRUE, guideHang = 0.05,main = "Gene dendrogram and module colors")dev.off()# Calculate eigengenesMEList = moduleEigengenes(datExpr0, colors = dynamicColors)MEs = MEList$eigengenes# Calculate dissimilarity of module eigengenesMEDiss = 1-cor(MEs);# Cluster module eigengenesMETree = hclust(as.dist(MEDiss), method = "average")# Plot the result#sizeGrWindow(7, 6)pdf(file="9_Clustering of module eigengenes.pdf",width=7,height=6)plot(METree, main = "Clustering of module eigengenes",xlab = "", sub = "")MEDissThres = 0.25######剪切高度可修改# Plot the cut line into the dendrogramabline(h=MEDissThres, col = "red")dev.off()# Call an automatic merging function#根据前面设置的剪切高度,对模块进行合并merge = mergeCloseModules(datExpr0, dynamicColors, cutHeight = MEDissThres, verbose = 3)# The merged module colorsmergedColors = merge$colors# Eigengenes of the new merged modules:mergedMEs = merge$newMEs#sizeGrWindow(12, 9)pdf(file="10_合并模块后的聚类树merged dynamic.pdf", width = 9, height = 6)plotDendroAndColors(geneTree, cbind(dynamicColors, mergedColors),c("Dynamic Tree Cut", "Merged dynamic"),dendroLabels = FALSE, hang = 0.03,addGuide = TRUE, guideHang = 0.05)dev.off()# Rename to moduleColorsmoduleColors = mergedColors# Construct numerical labels corresponding to the colors#构建相应颜色的数字标签colorOrder = c("grey", standardColors(50))moduleLabels = match(moduleColors, colorOrder)-1MEs = mergedMEs# Save module colors and labels for use in subsequent parts#&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&+&&&&&&&&&&&&&&&&&&数据保存&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++save(datExpr0,datTraits,MEs, TOM, dissTOM,moduleLabels, moduleColors, geneTree, sft, file = "11_networkConstruction-stepByStep.RData")#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++#+&&&&&&&&&&&&&&&&&&数据保存&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&load("11_networkConstruction-stepByStep.RData")#=====================================================================================#===============================================================================#+========step6 计算模块和临床性状相关系数(核心挑选色块)==============#+========================================#+=============================##############################relate modules to external clinical triats# Define numbers of genes and samplesnGenes = ncol(datExpr0)nSamples = nrow(datExpr0)#可以修改参数 p值pvalue 更换 moduleTraitCor = cor(MEs, datTraits, use = "p") moduleTraitPvalue = http://www.kingceram.com/post/corPvalueStudent(moduleTraitCor, nSamples)#sizeGrWindow(10,6)pdf(file="12_模块和临床形状关系图Module-trait relationships.pdf",width=10,height=6)# Will display correlations and their p-valuestextMatrix = paste(signif(moduleTraitCor, 2), "\n(",signif(moduleTraitPvalue, 1), ")", sep = "")dim(textMatrix) = dim(moduleTraitCor)par(mar = c(6, 8.5, 3, 3))# Display the correlation values within a heatmap plot #修改性状类型 data.framelabeledHeatmap(Matrix = moduleTraitCor,xLabels = names(data.frame(datTraits)),yLabels = names(MEs),ySymbols = names(MEs),colorLabels = FALSE,colors = greenWhiteRed(50),textMatrix = textMatrix,setStdMargins = FALSE,cex.text = 0.5,zlim = c(-1,1),main = paste("Module-trait relationships"))dev.off()#色块 red相关度 0.75#=====================================================================================#===============================================================================#+========step7 定义包含所有datTraits列的可变权重(MM and GS)==============#+========================================#+=============================#定义包含所有datTraits列的可变权重######## Define variable weight containing all column of datTraits###MM(gene Module Membership) and GS(gene Trait Significance)# names (colors) of the modulesmodNames = substring(names(MEs), 3)geneModuleMembership = as.data.frame(cor(datExpr0, MEs, use = "p"))MMPvalue = http://www.kingceram.com/post/as.data.frame(corPvalueStudent(as.matrix(geneModuleMembership), nSamples))names(geneModuleMembership) = paste("MM", modNames, sep="")names(MMPvalue) = paste("p.MM", modNames, sep="")#names of those traittraitNames=names(data.frame(datTraits))class(datTraits)geneTraitSignificance = as.data.frame(cor(datExpr0, datTraits, use = "p"))GSPvalue = http://www.kingceram.com/post/as.data.frame(corPvalueStudent(as.matrix(geneTraitSignificance), nSamples))names(geneTraitSignificance) = paste("GS.", traitNames, sep="")names(GSPvalue) = paste("p.GS.", traitNames, sep="")####plot MM vs GS for each trait vs each module##########example:royalblue and CKmodule="red"column = match(module, modNames)moduleGenes = moduleColors==moduletrait="TB"traitColumn=match(trait,traitNames)sizeGrWindow(7, 7)#par(mfrow = c(1,1))verboseScatterplot(abs(geneModuleMembership[moduleGenes, column]),abs(geneTraitSignificance[moduleGenes, traitColumn]),xlab = paste("Module Membership in", module, "module"),ylab = paste("Gene significance for ",trait),main = paste("Module membership vs. gene significance\n"),cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, col = module)######for (trait in traitNames){traitColumn=match(trait,traitNames)for (module in modNames){column = match(module, modNames)moduleGenes = moduleColors==moduleif (nrow(geneModuleMembership[moduleGenes,]) > 1){####进行这部分计算必须每个模块内基因数量大于2,由于前面设置了最小数量是30,这里可以不做这个判断,但是grey有可能会出现1个gene,它会导致代码运行的时候中断,故设置这一步#sizeGrWindow(7, 7)pdf(file=paste("13_", trait, "_", module,"_Module membership vs gene significance.pdf",sep=""),width=7,height=7)par(mfrow = c(1,1))verboseScatterplot(abs(geneModuleMembership[moduleGenes, column]),abs(geneTraitSignificance[moduleGenes, traitColumn]),xlab = paste("Module Membership in", module, "module"),ylab = paste("Gene significance for ",trait),main = paste("Module membership vs. gene significance\n"),cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, col = module)dev.off()}}}#####names(datExpr0)probes = names(data.frame(datExpr0))#=====================================================================================#===============================================================================#+========step8 导出计算完毕的(MM and GS)==============#+========================================#+=============================#################export GS and MM############### geneInfo0 = data.frame(probes= probes,moduleColor = moduleColors)for (Tra in 1:ncol(geneTraitSignificance)){oldNames = names(geneInfo0)geneInfo0 = data.frame(geneInfo0, geneTraitSignificance[,Tra],GSPvalue[, Tra])names(geneInfo0) = c(oldNames,names(geneTraitSignificance)[Tra],names(GSPvalue)[Tra])}for (mod in 1:ncol(geneModuleMembership)){oldNames = names(geneInfo0)geneInfo0 = data.frame(geneInfo0, geneModuleMembership[,mod],MMPvalue[, mod])names(geneInfo0) = c(oldNames,names(geneModuleMembership)[mod],names(MMPvalue)[mod])}geneOrder =order(geneInfo0$moduleColor)geneInfo = geneInfo0[geneOrder, ]write.table(geneInfo, file = "14_GS_and_MM.xls",sep="\t",row.names=F)#=====================================================================================#===============================================================================#+========step9 基因网络热图进行可视化(非常耗费内存资源)==============#+========================================#+=============================nGenes = ncol(datExpr0)nSamples = nrow(datExpr0)# Transform dissTOM with a power to make moderately strong connections more visible in the heatmapplotTOM = dissTOM^7# Set diagonal to NA for a nicer plotdiag(plotTOM) = NA# Call the plot functionsizeGrWindow(9,9)#这个耗电脑内存pdf(file="15_所有基因数量太多Network heatmap plot_all gene.pdf",width=9, height=9)TOMplot(plotTOM, geneTree, moduleColors, main = "Network heatmap plot, all genes")dev.off()nSelect = 400# For reproducibility, we set the random seedset.seed(10)select = sample(nGenes, size = nSelect)selectTOM = dissTOM[select, select]# There's no simple way of restricting a clustering tree to a subset of genes, so we must re-cluster.selectTree = hclust(as.dist(selectTOM), method = "average")selectColors = moduleColors[select]# Open a graphical window#sizeGrWindow(9,9)# Taking the dissimilarity to a power, say 10, makes the plot more informative by effectively changing# the color palette; setting the diagonal to NA also improves the clarity of the plotplotDiss = selectTOM^7diag(plotDiss) = NApdf(file="16_400个基因试试Network heatmap plot_selected genes.pdf",width=9, height=9)TOMplot(plotDiss, selectTree, selectColors, main = "Network heatmap plot, selected genes")dev.off()#=====================================================================================#===============================================================================#+========step10 新模块和临床性状热图 合并和拆分两个版本==============#+========================================#+=============================#sizeGrWindow(5,7.5)pdf(file="17新模块和临床性状热图_Eigengene dendrogram and Eigengene adjacency heatmap.pdf", width=5, height=7.5)par(cex = 0.9)plotEigengeneNetworks(MEs, "", marDendro = c(0,4,1,2), marHeatmap = c(3,4,1,2), cex.lab = 0.8, xLabelsAngle= 90)dev.off()#or devide into two parts# Plot the dendrogram#sizeGrWindow(6,6);pdf(file="18_Eigengene dendrogram_2.pdf",width=6, height=6)par(cex = 1.0)plotEigengeneNetworks(MEs, "Eigengene dendrogram", marDendro = c(0,4,2,0), plotHeatmaps = FALSE)dev.off()pdf(file="19_Eigengene adjacency heatmap_2.pdf",width=6, height=6)# Plot the heatmap matrix (note: this plot will overwrite the dendrogram plot)par(cex = 1.0)plotEigengeneNetworks(MEs, "Eigengene adjacency heatmap", marHeatmap = c(3,4,2,2), plotDendrograms = FALSE, xLabelsAngle = 90)dev.off()###########################Exporting to Cytoscape all one by one ###########################=====================================================================================#===============================================================================#+========step11 导出每个模块的边和节点关系(Cytoscape 绘图所需)==============#+========================================#+=============================# Select each module'''Error in exportNetworkToCytoscape(modTOM, edgeFile = paste("CytoscapeInput-edges-",: Cannot determine node names: nodeNames is NULL and adjMat has no dimnames.datExpr0 格式需要dataframe'''modules =module#module="red"for (mod in 1:nrow(table(moduleColors))){modules = names(table(moduleColors))[mod]# Select module probesprobes = names(data.frame(datExpr0))# inModule = (moduleColors == modules)modProbes = probes[inModule]modGenes = modProbes# Select the corresponding Topological OverlapmodTOM = TOM[inModule, inModule]dimnames(modTOM) = list(modProbes, modProbes)# Export the network into edge and node list files Cytoscape can readcyt = exportNetworkToCytoscape(modTOM,edgeFile = paste("20_CytoscapeInput-edges-", modules , ".txt", sep=""),nodeFile = paste("20_CytoscapeInput-nodes-", modules, ".txt", sep=""),weighted = TRUE,threshold = 0.02,nodeNames = modProbes,altNodeNames = modGenes,nodeAttr = moduleColors[inModule])}
- 512g固态硬盘为什么少几十G
- 美团用什么消息队列服务器,美团云发布消息队列服务 应对十倍流量激增的秘密武器
- geotools中泰森多边形的生成
- 手帐怎么画仙气十足
- 第十九篇 fetch请求
- 【OpenCV入门教程之十一】 形态学图像处理 二开运算 闭运算 形态学梯度
- 【PCIE体系结构十】链路两端的参考时钟有频偏怎么办?
- 入职不到一年被提名晋升 ,历经双十一大考,10 年阿里老兵成长之路
- 十七 Python工具箱系列
- Glide 入门到精通之十——加载图片到通知栏和应用小部件中