之前写过比例单元分割 , 现在修改如下 , 返回不含原来折点折线等分点数组与含原来折点的两个数组 。经过比较检验 , 比例单元法与分步法的时间效率与N,n有关 , 见注释 , 分步法只返回包含原来折点的等分数组 , 可自行优化 。代码如下:
import mathimport timeimport randomimport matplotlib.pyplot as plt# 与N n定有关 , 但还有其他因素 , 有时候第一种快 , 有时候第二种快 表面看有第一种性能更好;但因为前者有些不够完善 , 有影响 , 因此两种方法均可行N = random.randint(5, 60)# 第二种考虑因素多 , 某些情况会更加直观得出结果 , 因此有时候快 , 但是数据量越大 , 不确定因素越大 , 因此时间差距拉开# 时间计算N-n差值越大 , 用分步法 , N-n越小 , 用比例法 , 正常情况差不多line_coords = [[0, 0]]print(f'N原始分段数值取:{N}')while N >= 0:dx = random.randint(-1, 5)dy = random.randint(-1, 5)x = line_coords[len(line_coords) - 1][0] + dxy = line_coords[len(line_coords) - 1][1] + dyline_coords.insert(len(line_coords), [x, y])N = N - 1n = random.randint(5,20)# 100段分1000以上会快一点print(f'n目标等量分割值取:{n}')# 总注释:比例单元分割法不带详细注释版print(f'原始坐标:{line_coords}')t0 = time.time()# 分步法def split_line(line_coords, n):# 计算折线总长度total_len = 0for i in range(len(line_coords) - 1):total_len += ((line_coords[i][0] - line_coords[i + 1][0]) ** 2 + (line_coords[i][1] - line_coords[i + 1][1]) ** 2) ** 0.5# 计算等分长度dis = total_len / n# 初始化等分点数组split_points = [line_coords[0]]# 计算等分点坐标i = 0while i < len(line_coords) - 1:# 计算当前线段长度cur_len = ((line_coords[i][0] - line_coords[i + 1][0]) ** 2 + (line_coords[i][1] - line_coords[i + 1][1]) ** 2) ** 0.5if cur_len < dis:# 如果当前线段长度小于等分长度 , 则跳过该线段dis -= cur_leni += 1else:# 计算等分点坐标ratio = dis / cur_lenx = line_coords[i][0] + ratio * (line_coords[i + 1][0] - line_coords[i][0])y = line_coords[i][1] + ratio * (line_coords[i + 1][1] - line_coords[i][1])split_points.append([x, y])line_coords.insert(i + 1, [x, y])dis = total_len / ni += 1# 确保最后一个点是折线的最后一个点if split_points[-1] != line_coords[-1]:split_points.append(line_coords[-1])return split_points# 比例归元法def getSplitXY(array_xy,n):# 直角坐标距离计算 可以模拟经纬度距离 经过检验 , 不影响经纬度结果 , 这里使用直角坐标系距离计算# 提示:网络文章计算根据经纬度计算距离的函数方法可能有误 , 请自行检测def getDisArrDxy(array_xy):disArr = []dxy = []i = 0while i < len(array_xy) - 1:dx = array_xy[i + 1][0] - array_xy[i][0]dy = array_xy[i + 1][1] - array_xy[i][1]dis = (dx * dx + dy * dy) ** 0.5dxy.insert(i, [dx, dy])disArr.insert(i, dis)i = i + 1if i == len(array_xy) - 1:breakreturn disArr, dxyDisDxy = getDisArrDxy(array_xy)newdisArr = DisDxy[0]newDxy = DisDxy[1]# print(newDxy)# 等距离分隔值 分割常量dis = sum(newdisArr) / ndef IsEqual(x, y):IsEqual = FalseN1 = abs(x - y)if N1 < 0.000000001:IsEqual = Truereturn IsEqualdef IsInt(x):IsInt = FalseN1 = math.ceil(x) - xN2 = x - math.floor(x)if N1 < 0.000000001:x = math.ceil(x)return xif N2 < 0.000000001:x = math.floor(x)return xelse:return IsInt# 获取与分隔值比例数组 ArrDis 各分段Dis[i]/Dis# 比例初步整化 核心1def getIntRes(arrArr, array_xy):insert_xy = array_xy.copy()scale = arrArr.copy()# 剩余dis remanent 每一段最后一个取点位置 参考起点首个def getremanSc(scale):res = []sum = 0float = 0nn = 1# 第1段开始取 目标段for i in range(0, len(scale)):sum = sum + scale[i]sc = sum / disif sc <= nn:# 可插点的索引float = 1else:nn = math.ceil(sc)float = (scale[i] - (sum % dis)) / scale[i]res.insert(len(res), float)return resremanSc = getremanSc(scale)# 每一段第一个取点位置 参考起点首个def getFirst(scale):res = []sum = 0float = 0nn = 1# 第1段开始取 目标段for i in range(0, len(scale)):sum = sum + scale[i]sc = sum / disif sc < nn:# 可插点的索引float = 1else:nn = math.ceil(sc)float = 1 - (scale[i] - (sum % dis)) / scale[i]res.insert(len(res), float)return res#每一段第一个取点位置、参考起点尾scale.reverse()intSC = getFirst(scale)intSC.reverse()equalPts=[]# 整数化 比例分割def getIntSc(insert_xy, newDxy, intSC, remanSc):res = insert_xy.copy()j = 0for i in range(0, len(insert_xy) - 1):x0 = insert_xy[i][0] + newDxy[i][0] * intSC[i]y0 = insert_xy[i][1] + newDxy[i][1] * intSC[i]x1 = insert_xy[i][0] + newDxy[i][0] * remanSc[i]y1 = insert_xy[i][1] + newDxy[i][1] * remanSc[i]if IsEqual(insert_xy[i][0], x0) == True and IsEqual(insert_xy[i][1], y0) == True:res.insert(i + j + 1, [x1, y1])j = j + 1elif IsEqual(insert_xy[i+1][0], x1) == True and IsEqual(insert_xy[i+1][1], y1)==True:continueelse:if IsEqual(x0, x1) == True and IsEqual(y0, y1) == True:res.insert(i + j + 1, [x1, y1])j = j + 1else:res.insert(i + j + 1, [x0, y0])j = j + 1res.insert(i + j + 1, [x1, y1])j = j + 1return res# ("整数化 比例分割")res = getIntSc(insert_xy, newDxy, intSC, remanSc)return resgetIntxy = getIntRes(newdisArr, array_xy)resxy = getDisArrDxy(getIntxy)# cell单元化def getresxy(Intxy, intDisXY):rexy = Intxy.copy()j = 0for i in range(0, len(Intxy) - 1):if intDisXY[0][i] > dis:nn = (intDisXY[0][i] / dis)nn = IsInt(nn)ii = 1while ii < nn:x = Intxy[i][0] + ((((ii) * dis)) / intDisXY[0][i]) * intDisXY[1][i][0]y = Intxy[i][1] + ((((ii) * dis)) / intDisXY[0][i]) * intDisXY[1][i][1]if IsEqual(x,Intxy[i+1][0])==True and IsEqual(y,Intxy[i+1][1])==True:breakelse:rexy.insert(i + j + 1, [x, y])j = j + 1ii = ii + 1return rexyres_xy = getresxy(getIntxy, resxy)#print(res_xy)# cell 不含原折点坐标eqXY = [i for i in res_xy if i not in array_xy]#print(eqXY)return eqXY,res_xycellres = getSplitXY(line_coords, n)[0]print(f'getSlitXY花费时间:{time.time() - t0:.11f}s')print(cellres)t1 = time.time()xy = split_line(line_coords, n)print(f'split_line花费时间:{time.time() - t1:.11f}s')print(xy)# 画出坐标系和折线fig, ax = plt.subplots()x_coords = [coord[0] for coord in line_coords]y_coords = [coord[1] for coord in line_coords]ax.plot(x_coords, y_coords)# 计算折线长度# 画出等分点x_coords = [coord[0] for coord in cellres]y_coords = [coord[1] for coord in cellres]ax.plot(x_coords, y_coords, 'ro')# x_coord = [coord[0] for coord in xy]# y_coord = [coord[1] for coord in xy]# ax.plot(x_coord, y_coord, 'ro')plt.show()
的【0】示意图:
【折线等分点两种折线的等距离分割方法的python源码实现与比较 比例单元法与】
文章插图
函数目前只有一个小问题 , 就是每一段最后一个点实际与折线端点可能一样 , 但是不影响结果 , 可以用 。
函数已经得到优化 , 相比于之前 , 大幅减少转化 , 原理参考上一篇文章 。
, 的处理能力各有长处 。一般情况都可以使用 , 大量数据的时候参考N,n差值
- csdn markdown编辑器 表格使用说明及列宽度调整、对齐方式等问题处理
- Java程序员工作3年,每天坐吃等死状态,该如何打破这种情况?
- Java开发三年,月薪10K,每天CRUD,感觉就好像在坐吃等死!
- 程序员35岁之后不转管理只能混吃等死?
- 定时任务-启动服务立即执行一次,再按照cron表达式等待下一次执行
- 2023十大网络流行语出炉 显眼包i人/e人等上榜了
- 2023年12月6日环境气象预报:山西河北等地将有扬沙或浮尘天气
- 南开大学2017同等学力研修班都有那些专业可以报名?
- 明后两天吉林降雪仍将持续 长白山保护区等地将有中到大雪
- 2023年12月4日环境气象预报:华北黄淮等地有轻至中度霾天气