2.1.4 中间型指标
一个指标越靠近某个中间值越好,则称为中间型指标;
比如:河水的PH值(PH=7) 。
中间型指标转化为效益型指标的值
为:
公式解释如下,
图2-2 中间型指标转化为效益型指标的公式解释图
根据公式以及图2-2可知,其中
的值为
,即图2-2红色段的长度 。公式的右半部分
即表示
与
的距离并作为分子,
与
的最大距离
作为分母;用
来描述
与
的远近程度(
与
距离越远该值越大,越近该值越小),显然这是一个成本型指标,因此我们用1减去
(即
,显然
是属于
的)来将其转化为效益型指标 。
2.1.5 问题解决
将决策矩阵正向化处理之后得到正向化矩阵:
文章插图
其中
可由(2.1.2,2.1.3和2.1.4)中的公式求得 。
2.2 正向化矩阵规范化处理
为了去除量纲的影响,因此我们需要对已得到的正向化矩阵进行规范化处理,得到规范化矩阵:
文章插图
其中
上面公式可解释为,规范化矩阵的每一个元素即为正向化矩阵的对应元素/
。
2.3 构造指标的权重向量 2.3.1 层次分析法求权重向量
求权重向量即为各指标求其所占权重
,我们首先根据成对比较阵标度表对指标两两进行比较,从而得到判断矩阵(成对比较矩阵),然后依照层次分析法的步骤流程来得到权重向量,
其中,
的具体求法请参照本系列其他文章(01层次分析法) 。
2.3.2 熵权法求权重向量
具体求法请参照本系列的其他文章(03熵权法) 。
2.3.3 默认权重向量
若不采取上面两种方法构造权重向量,则采取默认权重向量,
其中,n为决策矩阵的列数,即指标的个数 。
2.3.4 问题解决
在本引例中,采取默认权重向量,即
在求得规范化矩阵
和指标的权重向量
后可得到加权规范阵:
文章插图
其中,
。
2.4 求各方案到正、负理想解的距离 2.4.1 求正、负理想解
正理想解为:
其中,
。
正理想解即位每个指标在各方案之间的最大值 。
负理想解为:
其中,
。
负理想解即位每个指标在各方案之间的最小值 。
2.4.2 求各方案与正、负理想解的距离
文章插图
其中,
文章插图
其中,
。
这里的与正、负理想解的距离采用的是欧几里得距离(欧氏距离) 。
2.4.3求综合指标值
在求得各方案与正负理想解的距离后,则可以得到各个方案的综合指标值(即各方案得分):
文章插图
其中
再将综合指标归一化,
文章插图
其中,
由数据可知,第5所研究院的综合指标值(0.3035)最高 。
归一化:归一化的目的就是使得预处理的数据被限定在一定的范围内(比如[0,1]或[-1,1]),从而消除奇异样本数据导致的不良影响 。奇异样本数据是指相对于其他输入样本特别大或特别小的样本值 。(标准化,规范化又是什么呢?)
三、法程序实现
法的代码实现如下:
//:.m(主程序)
%% TOPSIS% 程序的预处理部分clear;clc;disp('请输入决策矩阵');A=input('A=');disp('请输入各列的指标类型(1.效益型,2.成本型,3.区间型,4.中间型):');Type=input('Type=');[n1,n2]=size(A);%% 决策矩阵正向化处理% 将成本型、区间型和中间型指标转化为效益型指标X=zeros(n1,n2);for i=1:n2switch Type(i)case 1X(:,i)=A(:,i);case 2X(:,i)=G_Min2Max(A(:,i));case 3disp('请输入区间的上下界a,b:');a=input('a=');b=input('b=');X(:,i)=Inter2Max(A(:,i),a,b);case 4disp('请输入最好值value:');value=http://www.kingceram.com/post/input('value=');X(:,i)=Mid2Max(A(:,i),value);otherwisedisp('您输入的Type中的数据包含不属于1~4的数据,请修改!');endend%% 正向矩阵规范法处理% 为了将已正向化的矩阵消除量纲的影响,则需要对其进行规范化处理sum_X=sqrt(sum(X.*X));B=X./repmat(sum_X,n1,1);%% 求加权规范矩阵% 一个方案的各指标的重要程度不同,则需要对各指标赋予权值% 构造权重向量主要方法有:层次分析法,熵权法和默认方法weigh=ones(1,n2)./n2;%默认方法C=B.* repmat(weigh,n1,1);%% 计算与正负理想解的距离C_up=max(C);% C_up(j)表示第j个指标的正理想解C_down=min(C);temp1=C-repmat(C_up,n1,1);%temp1为cij-C_up(j)的差值temp2=C-repmat(C_down,n1,1);D_up=sum(temp1.^2,2).^0.5;%D_up(i)即为第i个方案与正理想解的距离D_down=sum(temp2.^2,2).^0.5;result=D_down./(D_up+D_down);%计算各方案的综合指标disp('result=');disp(result);[sort_result,index]=sort(result,'descend');disp('sort_result=');disp(sort_result);disp('index');disp(index);
下面三个代码段为正向化处理时所用到的函数:
//:.m(成本型
效益型)
function [f1]=G_Min2Max(X)% X表示需要正向化的决策矩阵的某一列[n1,~]=size(X);f1=repmat(max(X),n1,1)-X;end
//:.m(区间型
效益型)
function [f2]=G_Inter2Max(X,a,b)% X表示需要正向化的决策矩阵的某一列% a,b分别表示最佳区间的上下限M=max([a-min(X),max(X)-b]);%向量X中的所有元素与最佳区间[a,b]的最远距离f2=ones(size(X),1);for i=1:size(X)if ibf2(i)=1-(X(i)-b)/M;elsef2(i)=1;endendend
//:.m(中间型
效益型)
function [f3]=G_Mid2Max(X,value)% X表示需要正向化的决策矩阵的某一列% value表示处于中间的最好值M=max(abs(X-value));f3=1-abs(X-value)/M;end
四、总结
用法解决评价类问题时整体实现的流程:
图4 实现流程图
小结:
法是对于各指标的数据都是已知的,而层析分析法的几乎没有任何数据;因为熵权法存在缺陷,所以平时发表论文时一般不使用,而数模比赛时可以用 。
疑问:
归一化、标准化和规范法有什么异同?在写论文时,需要对指标正向化的公式进行解释吗?
【02【评价类】模型——TOPSIS法(理想解法、优劣解距离法)】结束语:本文部分内容来自于B站“数学建模学习交流”以及疯学网数学建模系列教程
- 【计算摄影】如何让拍摄的照片适配不同分辨率的设备?
- 【html5手游开发】虚拟摇杆及虚拟按键的开发
- 2011
- git rebase合并commit日志
- Nature chemistry|机器学习可以克服自组装肽发现中的人类偏见
- X5WebView体验飞一般的感觉
- 粽子有什么形状 粽子有什么样子的
- dbs:apple
- Next.js v4.1.4 文档中文翻译【转载】
- 实参为 类 类型 C++ 类模板实现链表类的插入、删除、查找、打印操作