N= 100000;cube = -1+2*rand(6,N);x1 = cube(1,:); y1 = cube(2,:); z1 = cube(3,:); %点1x2 = cube(4,:); y2 = cube(5,:); z2 = cube(6,:); %点2%cube为double型变量 , 此处仅仅创立一个普通数组dis1 = x1.^2+y1.^2+z1.^2;dis2 = x2.^2+y2.^2+z2.^2;I1 = find(dis1 < 1& dis2 <1); % 只选出落在球体内的2个点x1 = x1(I1); x2 = x2(I1);y1 = y1(I1); y2 = y2(I1);z1 = z1(I1); z2 = z2(I1);d = sqrt((x1-x2).^2+(y1-y2).^2+(z1-z2).^2);avg_d = sum(d)/length(d) % 球体内任取2点的平均距离
计算的结果并不唯一 , 但是结果绝大部分分布于准确值周围
2.蒙特卡洛模拟
【部分计算机仿真实验】蒙特卡洛模拟我们在最优化方法中已经有过提及 , 此处再次对其做出详细的声明:
蒙特卡罗方法也称统计模拟方法 , 是1940年代中期由于科学技术的发展和电子计算机的发明 , 而提出的一种以概率统计理论为指导的数值计算方法 。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法
蒙特卡洛法最常见的应用就是求积分 。
文章插图
蒙特卡洛法求积分的基本思想:大量采样(随机投点)求取期望
例题2:求解圆周率
N = 1e4;x = -1+2*rand(1,N);y = -1+2*rand(1,N);%随机取点m = sum(x.*x + y.*y <=1);%统计落在圆域内的点的数量my_PI2quick = 4*m/N%由圆和与它外切的正方形的面积之比计算圆周率Π
3.排队问题
01.单服务器下的排队问题
单服务台系统模拟:
clk =0;
TMAX=5*60 ;
(1)=0; %主循环外初始化首位顾客信息--可以简化循环体的处理
(1)=(10,2); cc = 1;%下一位顾客编号
while 函数*
转为类型为什么"*4"?----*
- 七年级上册英语书27页翻译,英语初一上册27页3b部分解释急急.......
- 2 计算机仿真技术
- 计算机架构仿真器
- 3 计算机仿真技术
- 11_1 韩顺平 数据结构与算法 树结构基础部分_二叉树
- CIMS 计算机集成制造系统
- 经济学和计算机类大学排名,经济学专业世界大学排名ARWU
- 武汉大学计算机学院深造率,2017届本科毕业生深造率排名与分析
- 美国的领土由哪三部分组成
- 揭秘为什么清朝男人要把头发剃掉一部分