的出现意味着自然语言理解技术迈上了新台阶,理解能力、语言组织能力、持续学习能力更强,其惊艳的用户体验源自于背后强大基座模型,技术层面上,Chat不是重点,GPT( Pre-,预训练生成模型)才是 。
特别是预训练大模型表现出的理解能力、语言组织能力以及持续学习能力,已经开始显示出它成为社会智能基础设施的趋势,即少量企业通过预训练大模型的能力与产品为大量企业基于提供基于此的个人消费及行业应用 。
具体来说,绝大多数B端企业及研究机构对人工智能的使用需要遵循算法、算力和数据三位一体的研究范式,即以一定的算力和数据为基础,使用开源算法框架训练智能模型,这直接产生了高昂的技术成本和应用门槛,而面对千行百业中碎片化、多样化、长尾化的下游应用需求,模型通用性、泛化性差的问题更加突出 。
AI 预训练大模型模式通过“预训练大模型+下游任务微调”的方式,可以有效地从大量标记和未标记的数据中捕获知识,极大地扩展了模型的泛化能力 。
应用视角下,“大规模”和“预训练”的两种属性意味着预训练大模型可以通过非常低成本的微调快速适应新的产业、领域、行业,实现跨模态、全链路的知识积累、沉淀、传播、复用 。
特别是行业级应用意味着将有更专业、更复杂、更多变的应用场景,需求的呈现可能包括画面、声音、视频等多样的形态,仅仅基于自然语言的大模型并不能够满足各种行业场景中的个性化需求 。那么,在语言理解之上引入图像、音频和视频等模态,让“”拥有语言思维的同时,还能够被赋予眼睛,那将会是什么样的新物种?
甚至有点《流浪地球2》的MOSS那味了 。
联汇科技自2019年已经将预训练大模型的创新要点锚定在跨模态领域 。
自研多模态预训练大模型是业界最早的语言增强视觉识别模型之一,基于大规模自监督学习的多模态人工智能算法,融合语言和视觉模态理解,实现下一代认知域人工智能应用场景落地 。
已完成基于行业的亿级图片、万级视频、十亿级图文大规模预训练,用更小的标注样本数量,融合更多的模态信息,获得更为准确的AI模型 。
是百亿级参数大模型,识别精准度大幅度提高,训练数据成本降低90%,开发周期由平均3个月缩短为10天,可有效覆盖大量长尾应用场景 。实现亿级多模态数据秒级匹配,匹配速度在GPU环境提高5倍以上、在CPU环境提高300倍以上,推理速度提高5倍以上,大幅度降低多模态大模型部署成本 。
不仅是国内首个通过工信部信通院大规模预训练模型系统检验的大模型项目,在多模态技术能力和平台能力方面表现优异,并作为技术平台提供方参与工业和信息化部、科学技术部共同主办的首届“兴智杯”全国人工智能创新应用大赛,更为运营商、电力能源等各行业参赛企业应用提供技术及平台保障 。
在ECCV 2022挑战赛中斩获Full-Shot(全量数据学习)赛道与Few-Shot(小样本数据学习)赛道双料冠军,更被国际知名市场调研机构IDC评为多模态AI大模型领域领先代表 。
更简单的理解是,同为预训练大模型,的能力是在自然语言层面,而则完成了文字、画面、音视频等多模态的扩展与融合,这意味着可以以更为多样、丰富的产品及应用形态赋能千行百业 。
场景驱动AI下的创新应用已经开始
联汇针对运营商、视频云、能源电力、智联网等各类企业客户及需求,通过建设视频AI业务平台、SaaS平台服务等多样的服务方案,加速与已经在众多行业和领域完成落地应用,围绕客户需求及应用场景,帮助用户形成自主的AI技术框架与算法能力,产出不同的算法与技术方案 。
- chatgpt赋能python:Python设置在哪:优化SEO
- ChatGPT已能操控机器人,工程师连代码都不用写,网友:微软在搞天网?
- 宋江为何把喜欢林冲的扈三娘嫁给矮脚虎王英
- 古代关于身高的趣事宋仁宗根据身高给士兵*饷
- chatgpt赋能python:Python编程中如何为角色添加功能
- 利用ChatGPT完成深度学习分类任务
- chatgpt赋能python:Python隐藏窗口:实现更加优雅的UI体验
- chatgpt赋能python:Python如何设计UI:最佳实践和关键洞察
- 玩转ChatGPT:基于Mucloud建立本地知识库
- 简单实现一个ChatGPT Plugin